Как проверить ротор короткозамкнутый

Как проверить ротор короткозамкнутый

Рубрика: 5. Энергетика

Дата публикации: 08.12.2014

Статья просмотрена: 1696 раз

Библиографическое описание:

Васильева Ю. З., Полищук В. И. Диагностика повреждения короткозамкнутой обмотки ротора асинхронного двигателя [Текст] // Технические науки в России и за рубежом: материалы IV Междунар. науч. конф. (г. Москва, январь 2015 г.). — М.: Буки-Веди, 2015. — С. 50-53. — URL https://moluch.ru/conf/tech/archive/124/6888/ (дата обращения: 26.03.2020).

Введение. При эксплуатации асинхронных двигателей (АД) повреждения в обмотке ротора (беличьей клетке) является довольно распространенным дефектом, до 10 % от всех повреждений в зависимости от мощности и типа машины [1]. Диагностировать механические повреждения в короткозамкнутой обмотке ротора АД крайне сложно ввиду отсутствия источников информации об электрических параметрах в обмотке ротора. Основным направлением исследований по диагностике таких повреждений считается частотный анализ статорных токов и напряжений [2], поскольку, любые повреждения в цепях ротора искажают магнитное поле АД, и, следовательно, в статорных токах и напряжениях должны проявляться искажения в зависимости от конкретного вида дефекта, произошедшего в роторных цепях.

Спецификой работы АД является переменная скорость вращения ротора в зависимости от нагрузки на валу, а, следовательно, и поврежденный дефект обмотки ротора наводит искажение в форме тока статора с непостоянной периодичностью [3]. Использование спектрального анализа оправдывается для стационарных сигналов, которые имеют периодический характер. Наличие нестабильности спектра Фурье при разложении статорного тока не даст однозначной трактовки технического состояния «беличьей клетки». Перспективным может быть направление декомпозиции токов статора на основе вейвлет-разложения [4].

Постановка задачи. На основе экспериментально снятых данных исследовать возможность применения вейвлет-преобразования для выявления диагностического признака механического повреждения короткозамкнутой обмотки АД.

Экспериментальные данные и их обработка. На рис.1 приведены осциллограммы токов фаз АД при наличии трещины в стержне обмотки ротора.

Рис. 1. Осциллограммы токов фаз АД при наличии трещины в стержне обмотки ротора

Сигналы фазных токов снимались с помощью гальванически развязанных датчиков тока и через плату ввода сигналов с АЦП подавались на компьютер. Затем массивы цифровых значений обрабатывались в программе MATLAB в которой имеются различные вейвлет функции.

Непрерывное прямое вейвлет-преобразование производится на основе выражения:

где вейвлет-коэффициенты; а — параметр масштаба; b — параметр времени; – базисная функция.

Большие значения а соответствуют низким частотам, а маленькие значения b — высоким [5].

Условие конечности ограничивает набор функций, которые можно использовать в качестве вейвлетов:

В качестве базисных функций могут быть выбраны любые функции, в том числе скачкообразные, импульсные, тригонометрические и т. д. Число вейвлетов, которое используется при разложении определяет уровень декомпозиции сигнала. При анализе экспериментальных данных был использован вейвлет Хаара. Как показал сопоставительный анализ токов фаз статора АД с повреждением и без повреждения существенных различий не выявлено.

В виду того, что искажение передается через магнитное поле, а оно общее для всей машины, то было решено подвергнуть вейвлет-анализу результирующий модуль токов статора определяемый по формуле:

,

На рис. 2 представлен результирующий модуль токов статора при пуске АД с повреждением рис 2,б и без повреждения рис.2,а. Как видно из рис.1 и рис. 2 искажение вызванное обрывом стержня незначительны в токах фазы и, более информативно проявляет себя в результирующе модуле токов статора.

Используя вейвлет Хаара, результирующий вектор модуля токов статора был разложен на компоненты, а затем восстановлен с помощью процедуры обратного вейвлет-преобразования из коэффициентов декомпозиции соответствующих уровней.

Рис. 2. Результирующий модуль токов статора в режиме пуска АД: а) – без повреждения; б) – при обрыве стержня

На рис. 3 показаны графики пятого составляющего сигнала декомпозиции результирующего модуля токов статора (D5). Во остальных коэффициентах детализации изменения не наблюдались.

Рис. 3. Графики составляющей D5: а) – без повреждения; б) – с обрывом

Компонент D5 реагирует на обрыв стержня ротора и при увеличении количества оборванных стержней амплитуды его пульсаций увеличивается, что служит однозначным диагностическим признаком наличия дефекта.

Использование вейвлет-разложения на компоненты при анализе токов статора для выявления повреждения в обмотке ротора АД более информативно чем спектральный анализ.

Вейвлет-разложение результирующего модуля токов статора является предпочтительным, так как в этом случае информационный признак повреждения проявляется сильнее, чем при вейвлет-разложении токов отдельных фаз.

1. Сивокобыленко В. Ф., Костенко В. И. Причины повреждения электродвигателей в пусковых режимах на блочных тепловых электростанциях // Электрические станции. — 1974. — № 1. — С. 33–35.

2. Рогачев В. А. Диагностирование эксцентриситета ротора асинхронных электродвигателей по гармоническому составу тока статора: Дис. канд. тех. наук.: 05.09.01. –Новочеркасск, 2008. — 173 с.

3. Купцов В. В. Разработка метода диагностирования АД на основе конечно-элементной модели: Дис… канд. техн. наук: 05.09.03. — Магнитогорск, 2010. — 142 с.

4. В. И. Полищук, Глазырин А. С., Глазырина Т. А. Функциональная вейвлет-диагностика состояния обмоток роторов трехфазных электрических машин// Электричество. — 2012. — № 6. — C. 42–45.

5. Дьяконов В. П. Вейвлеты: От теории к практике / В. П. Дьяконов. — М.: Солон-Р, 2002. — 448 с.

Похожие статьи

Система охлаждения турбогенератора.

результирующий модуль токов статора, повреждение, обмотка ротора, осциллограмма токов фаз, обрыв стержня, наличие трещины, MATLAB, спектральный анализ, магнитное поле, стержень обмотки ротора.

Скин-эффект в асинхронном двигателе с короткозамкнутым.

Диагностика повреждения короткозамкнутой обмотки ротора. Рис. 1. Осциллограммы токов фаз АД при наличии трещины в стержне обмотки ротора. В виду того, что искажение передается через магнитное поле, а оно общее для всей машины.

Создание вращающего момента вентильного электродвигателя

расположенного на роторе, Iя — ток статорных обмоток (ток якоря), К — постоянный для данного ЭД коэффициент.

На рис.1 приведены осциллограммы токов фаз АД при наличии трещины в стержне обмотки ротора.

Моделирование асинхронного двигателя со статическим.

Индуктивности обмоток статора и ротора, соответственно: (5).

Модель реализуем в системе Matlab 7.8 с использованием базового инструментария Simulink.

Рис. 5. Подсистема Subsystem. Рис. 6. Осциллограмма тока статора в фазе А.

Применение датчиков положения ротора для создание.

Переключение фаз статора должно производиться при определенных, согласованных с ними, положениях ротора.

1. Магнитное поле, образованное силовым магнитом и магнитное поле, образованное статорными обмотками, представляют собой фигуры в виде двух вращающихся.

Моделирование асинхронного двигателя с укладкой обмотки.

. Отсюда ток в стержне ротора определится по следующему выражению

элемент матрицы А, статорная обмотка, момент времени, линейный двигатель, MATLAB, матрица А, роторная обмотка, ток, уравнение, элемент.

Программирование синхронного неявнополюсного дугостаторного.

ток, статорная обмотка, частотный пуск, обмотка ротора, MATLAB, элемент матрицы А, момент времени, матрица А, магнитная схема замещения, результирующий ток.

Способ получения электроэнергии | Статья в журнале.

EGEN, магнитное поле, индукционная катушка статора, обмотка статора, постоянная, магнит, магнит ротора, магнитная индукция, магнитный металл, магнитный поток.

Математическая модель синхронного неявнополюсного.

ток, статорная обмотка, частотный пуск, обмотка ротора, MATLAB, элемент матрицы А, момент времени, матрица А, магнитная схема замещения, результирующий ток.

Читайте также:  Как наклеить шпон в домашних условиях видео

Похожие статьи

Система охлаждения турбогенератора.

результирующий модуль токов статора, повреждение, обмотка ротора, осциллограмма токов фаз, обрыв стержня, наличие трещины, MATLAB, спектральный анализ, магнитное поле, стержень обмотки ротора.

Скин-эффект в асинхронном двигателе с короткозамкнутым.

Диагностика повреждения короткозамкнутой обмотки ротора. Рис. 1. Осциллограммы токов фаз АД при наличии трещины в стержне обмотки ротора. В виду того, что искажение передается через магнитное поле, а оно общее для всей машины.

Создание вращающего момента вентильного электродвигателя

расположенного на роторе, Iя — ток статорных обмоток (ток якоря), К — постоянный для данного ЭД коэффициент.

На рис.1 приведены осциллограммы токов фаз АД при наличии трещины в стержне обмотки ротора.

Моделирование асинхронного двигателя со статическим.

Индуктивности обмоток статора и ротора, соответственно: (5).

Модель реализуем в системе Matlab 7.8 с использованием базового инструментария Simulink.

Рис. 5. Подсистема Subsystem. Рис. 6. Осциллограмма тока статора в фазе А.

Применение датчиков положения ротора для создание.

Переключение фаз статора должно производиться при определенных, согласованных с ними, положениях ротора.

1. Магнитное поле, образованное силовым магнитом и магнитное поле, образованное статорными обмотками, представляют собой фигуры в виде двух вращающихся.

Моделирование асинхронного двигателя с укладкой обмотки.

. Отсюда ток в стержне ротора определится по следующему выражению

элемент матрицы А, статорная обмотка, момент времени, линейный двигатель, MATLAB, матрица А, роторная обмотка, ток, уравнение, элемент.

Программирование синхронного неявнополюсного дугостаторного.

ток, статорная обмотка, частотный пуск, обмотка ротора, MATLAB, элемент матрицы А, момент времени, матрица А, магнитная схема замещения, результирующий ток.

Способ получения электроэнергии | Статья в журнале.

EGEN, магнитное поле, индукционная катушка статора, обмотка статора, постоянная, магнит, магнит ротора, магнитная индукция, магнитный металл, магнитный поток.

Математическая модель синхронного неявнополюсного.

ток, статорная обмотка, частотный пуск, обмотка ротора, MATLAB, элемент матрицы А, момент времени, матрица А, магнитная схема замещения, результирующий ток.

Якорь болгарки больше всех узлов подвергается температурным, механическим и электромагнитным нагрузкам. Поэтому он является частой причиной отказа работы инструмента, и как следствие, часто нуждается в ремонте. Как проверить якорь на работоспособность и починить элемент своими руками — в нашей статье.

Устройство якоря болгарки

Якорь двигателя болгарки представляет собой токопроводящую обмотку и магнитопровод, в который запрессован вал вращения. Он имеет на одном конце ведущую шестерню, на другом коллектор с ламелями. Магнитопровод состоит из пазов и мягких пластин, покрытых лаком для изоляции друг от друга.

Схема якоря болгарки

В пазы по специальной схеме уложены по два проводника якорной обмотки. Каждый проводник составляет половинку витка, концы которого попарно соединяются на ламелях. Начало первого витка и конец последнего находятся в одном пазу, поэтому они замкнуты на одну ламель.

Как проверить якорь болгарки на исправность

Виды неисправностей якоря:

  • Пробой изоляции на массу — это замыкание обмотки на металлический корпус ротора. Происходит из-за разрушения изоляции.
  • Распайка коллекторных выводов.
  • Неравномерный износ коллектора.
  • Если якорь неисправен, происходит перегрев двигателя, оплавляется изоляция обмотки, витки коротко замыкаются. Отпаиваются контакты, соединяющие обмотку якоря с пластинами коллектора. Прекращается подача тока и двигатель перестаёт работать.

    Виды диагностики якоря:

    • визуально;
    • мультиметром;
    • лампочкой;
    • специальными приборами.

    Стандартная диагностика

    Прежде чем взять прибор для диагностики, осмотрите якорь. На нём могут быть повреждения. Если проводка оплавилась, подгоревший изоляционный лак оставит чёрные следы или специфический запах. Можно увидеть погнутые и смятые витки либо токопроводящие частицы, например, остатки припоя. Эти частицы являются причиной короткого замыкания между витками. Ламели имеют загнутые края, называемые петушками, для соединения с обмоткой.

    Из-за нарушения этих контактов ламели выгорают.

    Другие повреждения коллектора: приподнятые, изношенные или пригоревшие пластины. Между ламелями может скапливаться графит от щёток, что тоже указывает на короткое замыкание.

    Загнутые пластины коллектора

    Как проверить с помощью мультиметра

    • Поставьте сопротивление 200 Ом. Соедините щупы прибора с двумя соседними ламелями. Если сопротивление одинаковое между всеми соседними пластинами, значит, обмотка исправна. Если сопротивление менее 1 Ом и очень близко к нулю, есть короткое замыкание между витками. Если сопротивление выше среднего в два и более раз, значит, есть обрыв витков обмотки. Иногда при обрыве сопротивление настолько велико, что прибор зашкаливает. На аналоговом мультиметре стрелка уйдёт до конца вправо. А на цифровом ничего не покажет.

    Диагностика обмотки якоря мультиметром

    Видео: как проходит проверка

    Если у вас нет тестера, воспользуйтесь лампочкой с напряжением 12 вольт мощностью до 40 Вт.

    Как проверить ротор болгарки с помощью лампочки

    • Возьмите два провода и соедините их с лампой.
    • На минусовом проводе сделайте разрыв.
    • Подайте на провода напряжение. Концы разрыва приложите к пластинам коллектора и прокрутите его. Если лампочка горит, не меняя яркости, значит, короткого замыкания нет.
    • Проведите тест замыкания на железо. Соединяйте один провод с ламелями, а другой с железом ротора. Потом с валом. Если лампочка будет гореть, значит, есть пробой на массу. Обмотка замыкает на корпус ротора или вал.

    Эта процедура аналогична диагностике мультиметром.

    Проверка индикатором короткозамкнутых витков (ИКЗ)

    Попадаются якоря, у которых не видно проводов, подсоединённых к коллектору из-за заливки непрозрачным компаундом или из-за бандажа. Поэтому трудно определить коммутацию на коллекторе относительно пазов. Поможет в этом индикатор короткозамкнутых витков.

    Этот прибор имеет небольшие размеры и прост в эксплуатации.

    Сначала проверьте якорь на отсутствие обрывов. Иначе, индикатор не сможет определить короткое замыкание. Для этого тестером измерьте сопротивление между двумя соседними ламелями. Если сопротивление превышает среднее хотя бы в два раза, значит, есть обрыв. При отсутствии обрыва переходите к следующему этапу.

    Регулятор сопротивления позволяет выбрать чувствительность прибора. У него имеются две лампочки: красная и зелёная. Настройте регулятор так, чтобы красная лампочка начала гореть. На корпусе индикатора есть два датчика в виде белых точек, расположенных на расстоянии 3 сантиметра друг от друга. Приложите индикатор датчиками к обмотке. Медленно крутите якорь. Если загорится красная лампочка, значит, есть короткое замыкание.

    Видео: ИКЗ в работе

    Диагностика прибором проверки якорей (дросселем)

    Прибором проверки якорей определяют наличие межвиткового замыкания обмотки. Дроссель представляет собой трансформатор, у которого есть только первичная обмотка и вырезан магнитный зазор в сердечнике.

    Схема прибора проверки якорей

    Когда мы кладём ротор в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. Включите прибор и положите на якорь металлическую пластину, например, металлическую линейку или ножовочное полотно. Если имеется межвитковое замыкание, от местного перенасыщения железа пластина будет вибрировать либо намагничиваться к корпусу якоря. Поворачивайте якорь вокруг оси, перемещая пластину так, чтобы она лежала на разных витках. Если замыкания нет, то пластина будет свободно перемещаться по ротору.

    Прибор проверки якорей

    Видео: Как сделать дроссель своими руками и проверить якорь

    Как отремонтировать якорь в домашних условиях

    Из-за якоря происходит треть поломок шуруповёрта. При каждодневном интенсивном режиме работы неисправности могут возникнуть уже в первые полгода, например, при несвоевременной замене щёток. При щадящем использовании шуруповёрт продержится год и более.

    Читайте также:  Как поставить защелку на межкомнатную дверь

    Якорь можно спасти, если не нарушена балансировка. Если во время работы прибора слышен прерывистый гул и идёт сильная вибрация, то это нарушение балансировки. Такой якорь подлежит замене. А отремонтировать можно обмотку и коллектор. Небольшие короткие замыкания устраняются. Если повреждена значительная часть обмотки, её можно перемотать. Изношенные и сильно повреждённые ламели проточить, нарастить или впаять. К тому же не стоит браться за ремонт якоря, если вы неуверены в своих возможностях. Лучше его заменить или отнести в мастерскую.

    Проточка коллектора

    Со временем на коллекторе образуется выработка от щёток. Чтобы от неё избавиться, необходимо:

      Проточить коллектор, используя резцы для продольного обтачивания, то есть проходные резцы.

    Проходной прямой резец

    Не забудьте очистить ротор от стружки, чтобы не произошло замыкания.

    Видео по теме

    Как перемотать якорь

    Перед тем как разобрать якорь, запишите или зарисуйте направление обмотки. Оно может быть влево или вправо. Чтобы его определить правильно, посмотрите на торец якоря со стороны коллектора. Наденьте перчатки, возьмите острые кусачки или ножовку по металлу. Удалите лобовые части обмотки. Коллектор нужно почистить, а снимать необязательно. Аккуратно, не повреждая пазовые изоляторы, выбейте стержни оставшихся частей обмотки с помощью молотка и металлического зубила.

    Видео: Снимаем обмотку

    Надфилем, не повреждая плёнки изолятора, удалите остатки пропитки. Посчитайте проводники в пазу. Высчитайте число витков в секции и измерьте диаметр провода. Нарисуйте схему. Нарежьте из картона гильзы для изоляции и вставьте их в пазы.

    Видео: Намотка влево и вправо

    После намотки сварите выводы секций с петушками коллектора. Теперь проверьте обмотку тестером и индикатором короткого замыкания. Приступайте к пропитке.

    Инструкция по пропитке (с учётом регулятора числа оборотов)

    • Убедившись в отсутствии проблем, отправьте якорь в электродуховку на прогрев для лучшего протекания эпоксидной смолы.
    • После прогрева поставьте якорь на стол под наклоном для лучшего растекания по проводам. Капните смолой на лобовую часть и медленно крутите якорь. Капайте до появления клея на противоположной лобовой части.

    Пропитка под наклоном

    Сушка якоря на воздухе до полимеризации

    В конце процесса слегка проточите коллектор. Балансируйте якорь при помощи динамической балансировки и болгарки. Теперь проточите окончательно на подшипнике. Необходимо прочистить пазы между ламелями и отполируйте коллектор. Сделайте окончательную проверку на обрывы и замыкания.

    Особенность обмотки для болгарок с регулируемым числом оборотов в том, что ротор намотан с запасом мощности. Плотность тока влияет на число оборотов. Сечение провода завышено, а количество витков занижено.

    Ремонт: Устранение пробоя изоляции

    Если пробой изоляции был небольшой и вы его нашли, необходимо очистить это место от нагара и проверить сопротивление. Если его значение нормальное, заизолируйте провода асбестом. Сверху капните быстросохнущим клеем типа «Супермомент». Он просочится через асбест и хорошо заизолирует провод.

    Если вы так и не нашли место пробоя изоляции, то попробуйте аккуратно пропитать обмотку пропиточным электроизоляционным лаком. Пробитая и непробитая изоляция пропитается этим лаком и станет прочнее. Высушите якорь в газовой духовке при температуре около 150 градусов. Если и это не поможет, попробуйте перемотать обмотку или поменять якорь.

    Пайка пластин коллектора

    Ламели установлены на пластмассовую основу. Они могут быть стёрты до самой основы. Остаются только края, до которых щётки не достают.

    Такой коллектор можно восстановить методом пайки.

    • Из медной трубы или пластины нарежьте необходимое количество ламелей по размерам.
    • После того как зачистили якорь от остатков меди, припаивайте обычным оловом с паяльной кислотой.
    • Когда все ламели припаяны, сделайте шлифовку и полировку. Если нет токарного станка, воспользуйтесь дрелью или шуруповёртом. Вставьте вал якоря в патрон. Сначала отшлифуйте напильником. Потом отполируйте нулевой наждачной бумагой. Не забудьте прочистить пазы между ламелями и измерить сопротивление.
    • Бывают не до конца повреждённые ламели. Чтобы их восстановить, необходимо провести более тщательную подготовку. Слегка проточите коллектор для очистки пластин.

    Повреждённая пластина коллектора

    Расширяем место бормашиной

    Заготовка ламели в пазу

    Если коллектор был изношен полностью, то после пайки его хватит не более, чем на месяц активного использования. А не до конца повреждённые пластины после такого ремонта выдерживают несколько замен щёток и не выпаиваются.

    Гальваническое наращивание пластин коллектора

    Восстановленная медь очень твёрдая. Срок службы коллектора как у нового. Гальваническим наращиванием можно восстановить как полностью стёртый коллектор, так и частично повреждённые пластины.

    В связи с возникновением в стержнях короткозамкнутых обмоток роторов асинхронных электродвигателей дефектов, в условиях эксплуатации необходимо периодически проверять техническое состояние этих обмоток.

    При обрывах стержней обмоток роторов увеличиваются время разгона и добавочные потери электродвигателей, уменьшаются КПД и коэффициент мощности, увеличиваются потребляемый ток и скольжение.

    Наиболее вредное влияние на работу электродвигателей оказывает вибрация, возникающая вследствие обрыва стержней короткозамкнутой обмотки. В результате вибрация приводит к выходу электродвигателей из строя.

    В технической литературе введено понятие коэффициента несимметрии, который для случая обрыва одного стержня.

    Проведенные исследования влияния обрывов стержней на характеристики и вибрацию асинхронных электродвигателей показали, что для электродвигателей единых серий допускается обрыв не более одного стержня.

    Внешними признаками наличия обрывов стержней электродвигателей являются повышенная вибрация и шум при работе, увеличивающиеся с ростом нагрузки. Характерным является и то, что вибрация и шум периодически изменяются с частотой, равной удвоенной частоте скольжения.

    Стрелки амперметров, включенных в цепь питания электродвигателей с обрывами стержней короткозамкнутых обмоток роторов, также периодически колеблются из-за периодических изменений эффективных значении токов в фазах.

    На практике применяют несколько способов определения технического состояния короткозамкнутых обмоток роторов.

    Способ измерения токов в обмотках статора при проворачивании ротора вручную позволяет установить наличие обрывов стержней в короткозамкнутых обмотках асинхронных электродвигателей. Согласно этому способу одну или две фазы обмотки статора электродвигателя включают на напряжение переменного тока, равное 10—15% номинального, и при медленном проворачивании ротора вручную измеряют ток в цепи питания (рис. 19).


    Рис. 19. Схема для определения обрывов стержней короткозамкнутых обмоток роторов электродвигателей

    Для определения изменения тока удобно использовать самопишущий амперметр. Следует отметить, что указанный способ более чувствителен к обрывам стержней при подаче напряжения на одну фазу обмотки, чем при подаче напряжения на две фазы. Если при вращении ротора ток в обмотке статора не изменяется, обрывы в стержнях обмотки ротора отсутствуют. Изменение тока при проворачивании ротора указывает на наличие обрыва стержней. В связи с тем, что изменение тока зависит от числа поврежденных стержней и их взаимного расположения, определить число оборванных стержней по отклонению стрелки амперметра трудно. После обнаружения факта наличия обрыва стержней электродвигатель подлежит разборке и точному установлению числа оборванных стержней.

    Читайте также:  Как делать драники из творога

    Способ контроля стержней короткозамкнутых обмоток роторов 121 основан на использовании зависимости скольжения электродвигателей от числа оборванных стержней. При определении числа оборванных стержней в соответствии с этим способом измеряют скольжение электродвигателя при заданной нагрузке и температуре и полученную величину сравнивают с контрольной, измеренной на электродвигателе с ротором, не имеющим обрывов. Для использования этого способа необходимо иметь эталонные кривые зависимостей скольжения от нагрузки для конкретных типов электродвигателей, что ограничивает применение способа при эксплуатации электрооборудования.

    Определение технического состояния короткозамкнутых обмоток роторов электродвигателей единых серий, в связи со сравнительно легким доступом к электродвигателям, не вызывает трудностей. Для специальных электродвигателей, например, погружных, определение технического состояния короткозамкнутых обмоток традиционными способами является достаточно трудоемкой операцией. Так, для контроля электродвигатели погружных электронасосов необходимо было поднимать из скважины на поверхность. В связи с этим в Украинском филиале ГОСНИТИ было разработано два способа определения технического состояния короткозамкнутых обмоток роторов электродвигателей, доступ к которым невозможен или затруднен.

    Способ определения степени повреждения короткозамкнутых обмоток роторов погружных асинхронных электродвигателей основан на положении, что при неподвижном роторе, имеющем повреждение короткозамкнутой обмотки, ток в фазах зависит от положения ротора относительно статора.

    У электродвигателей погружных насосов полюсное деление составляет 180°, в связи с чем при вращении ротора, имеющего дефекты обмоток, период изменения эффективного значения тока фазы соответствует половине оборота ротора. Изменение эффективного значения тока связано с изменением магнитного сопротивления фазы электродвигателя при изменении расположения дефектов обмотки ротора относительно обмотки статора, в которой измеряют ток. В погружных электродвигателях это изменение сравнительно большое. Так, при обрыве четырех расположенных рядом стержней при повороте ротора на один оборот эффективное значение тока изменяется на 42% средней величины.

    Разработанный способ позволяет определить степень повреждения короткозамкнутых обмоток роторов без подъема погружных электродвигателей из скважины. Способ пригоден и для контроля других типов асинхронных электродвигателей, доступ к валам которых затруднен или невозможен. Для определения технического состояния стержней с помощью возбуждения фаз обмотки статора ротор электродвигателя поворачивают на определенные углы (шаговое вращение). После каждого поворота обмотку статора подключают к стабилизированному напряжению переменного тока и самопишущим амперметром записывают ток. Шаговое вращение продолжают до тех пор, пока ротор не сделает один оборот.


    Рис. 20. Схема для определения степени повреждения короткозамкнутых обмоток роторов погружных электродвигателей

    На рис. 20 изображена схема для определения повреждений короткозамкнутых обмоток роторов погружных электродвигателей. Для шагового перемещения ротора статор электродвигателя М включают в сеть переменного тока через диоды Д1, Д2 и Д3. Включением и выключением переключателей В1 и В2, которые включены последовательное диодами, осуществляется шаговое перемещение ротора. Для шагового перемещения ротора можно применять и другие схемы, например, с управляемыми вентилями. Измерительная часть схемы состоит из самопишущего амперметра А, регистрирующего ток через трансформатор тока Тm. После каждого перемещения ротора обмотки статора отключают от электрической сети, на два вывода электродвигателя выключателем В3 подают стабилизированное напряжение и амперметром А записывают значение тока в обмотках.

    При отсутствии повреждений в короткозамкнутой обмотке ротора ток будет одинаковым при всех положениях ротора. Если короткозамкнутая обмотка ротора имеет обрывы стержней, ток будет зависеть от положения ротора относительно обмоток статора, при этом изменение тока будет тем больше, чем большее число стержней имеют повреждения. По изменению токов при разных положениях ротора в пределах одного оборота оценивают техническое состояние короткозамкнутой обмотки.

    Степень повреждения обмотки ротора при локальном (местном) размещении дефектов определяют по формуле

    где γ — степень повреждения обмотки, %; RR — коэффициент конструктивных особенностей электродвигателя; Iмакс, Iмин — наибольшее и наименьшее значения измеренных токов, А.

    Экспериментальные данные показывают, что для погружных электродвигателей (RR = 1), обмотка ротора которых имеет 24 стержня, при обрыве двух γ = 9,8%, а при обрыве четырех γ = 28%. Допустимое значение у для этих электродвигателей составляет 10%.

    Способ определения технического состояния короткозамкнутых обмоток роторов, разработанный в Украинском филиале ГОСНИТИ для электродвигателей, доступ к валам которых затруднен или невозможен, позволяет определить число поврежденных стержней независимо от их взаимного расположения. Способ не требует остановки электродвигателя. Способ основан на определении связи между частотой модуляции токов электродвигателей, у которых короткозамкнутая обмотка имеет дефекты, и зависимостью скольжения электродвигателей от нагрузки и числа поврежденных стержней.

    У электродвигателей, имеющих повреждение стержней, в связи с периодическим изменением магнитного сопротивления фаз во время вращения ротора, имеет место модуляция токов, потребляемых из электрической сети. Значение модуляции токов зависит от числа поврежденных стержней и от их взаимного расположения, а частота модуляции определяется только значением скольжения.


    Рис. 21. Осциллограммы токов, потребляемых погружным электродвигателем ПЭДВ-8-140, при отсутствии обрывов стержней ротора (а) и при обрыве четырех стержней (б).

    На рис. 21 показаны осциллограммы токов, потребляемых погружным электродвигателем для случаев, когда стержни ротора не имеют повреждений и при обрыве стержней. Значение скольжения электродвигателей зависит от нагрузки и состояния короткозамкнутых обмоток роторов (числа стержней с обрывами и ослаблениями). Скольжение электродвигателей увеличивается с увеличением числа поврежденных стержней. Зависимости скольжения погружных электродвигателей ПЭДВ-8-140 от потребляемой мощности для случаев, когда стержни не имеют обрывов и при обрыве двух, четырех и шести стержней ротора изображены на рис. 22.


    Рис. 22. Зависимость скольжения электродвигателей ПЭДВ-8-140 от потребляемой мощности и состояния стержней короткозамкнутой обмотки ротора:
    1 — обрывы стержней отсутствуют; 2 — при обрыве двух стержней; 3 — при обрыве четырех стержней; 4 — при обрыве шести стержней.

    Из приведенных на рисунке кривых видно, что при определенной мощности при увеличении числа оборванных стержней скольжение увеличивается. Так, при потребляемой мощности 8 кВт при обрыве двух, четырех и шести стержней скольжение увеличивается соответственно на 8,17 и 41%. Заштрихованная часть рисунка отвечает допустимым значениям скольжения погружных электродвигателей ПЭДВ-8-140.

    Схему для определения технического состояния короткозамкнутых обмоток роторов с помощью описанного выше способа иллюстрирует рис. 23.


    Рис. 23. Схема для определения технического состояния коротко-замкнутых обмоток роторов

    У работающего от сети двигателя М измеряют потребляемую мощность ваттметром W и частоту модуляции тока прибором Hz. На графике (рис. 22) находится точка, соответствующая полученным результатам измерения. Если точка размещена в заштрихованной зоне, электродвигатель можно оставлять работать. В противном случае электродвигатель подлежит ремонту. Пользуясь кривыми рис. 22, по размещению точки можно определить число дефектных стержней короткозамкнутой обмотки ротора. Погружные электродвигатели, имеющие 24 стержня короткозамкнутой обмотки, допускают работу при обрыве не более двух стержней.

    Для удобства пользования этим способом в условиях эксплуатации, целесообразно изготовить универсальную номограмму для определения допустимого числа оборванных стержней для всего диапазона мощностей определенного типа электродвигателей (например, погружных).

    Ссылка на основную публикацию
    Как пришить резинку к простыне видео
    Не каждый фабричный комплект постельного белья может иметь простынь на резинке. Но, для высокого матраса требуется именно простынь на резинке....
    Как приготовить соус к макаронам видео
    Одно из самых известных итальянских блюд — спагетти, немыслимы без соуса. Соусов к спагетти бывает великое множество, мы же с...
    Как приготовить сырокопченое мясо в домашних условиях
    Ингредиенты свиная вырезка 8 кг.! соль 200 гр. ! insta cure 30 гр. ! сахар коричневый 50 гр. ! чёрный...
    Как пришить рукава к футболке
    Футболка – это, пожалуй, тот предмет повседневной одежды, которого много никогда не бывает. Поэтому всегда можно приобрести ткань и порадовать...
    Adblock detector